Problem A. 16

Show that similarity preserves matrix multiplication (that is, if $\mathrm{A}^{e} \mathrm{~B}^{e}=\mathrm{C}^{e}$, then $\mathrm{A}^{f} \mathrm{~B}^{f}=\mathrm{C}^{f}$).
Similarity does not, in general, preserve symmetry, reality, or hermiticity; show, however, that if S is unitary, and H^{e} is hermitian, then H^{f} is hermitian. Show that S carries an orthonormal basis into another orthonormal basis if and only if it is unitary.

Solution

Let there be an old orthonormal basis $\left\langle e_{i} \mid e_{j}\right\rangle=\delta_{i j}$ and a new orthonormal basis $\left\langle f_{i} \mid f_{j}\right\rangle=\delta_{i j}$. Suppose that in this old basis two matrices multiply to give $\mathrm{A}^{e} \mathrm{~B}^{e}=\mathrm{C}^{e}$. In the new basis the corresponding matrices multiply to give

$$
\begin{aligned}
\mathrm{A}^{f} \mathrm{~B}^{f} & =\left(\mathrm{SA}^{e} \mathrm{~S}^{-1}\right)\left(\mathrm{SB}^{e} \mathrm{~S}^{-1}\right) \\
& =\mathrm{SA}^{e}\left(\mathrm{~S}^{-1} \mathrm{~S}\right) \mathrm{B}^{e} \mathrm{~S}^{-1} \\
& =\mathrm{SA}^{e}(\mathrm{I}) \mathrm{B}^{e} \mathrm{~S}^{-1} \\
& =\mathrm{SA}^{e} \mathrm{~B}^{e} \mathrm{~S}^{-1} \\
& =\mathrm{S}\left(\mathrm{~A}^{e} \mathrm{~B}^{e}\right) \mathrm{S}^{-1} \\
& =\mathrm{SC}^{e} \mathrm{~S}^{-1} \\
& =\mathrm{C}^{f}
\end{aligned}
$$

Therefore, similarity preserves matrix multiplication. Suppose now that S is unitary, $\mathrm{S}^{-1}=\mathrm{S}^{\dagger}$, and that \mathbf{H}^{e} is hermitian, $\left(\mathrm{H}^{e}\right)^{\dagger}=\mathrm{H}^{e}$. In the new basis the hermitian matrix is

$$
\mathrm{H}^{f}=\mathrm{SH}^{e} \mathrm{~S}^{-1}
$$

Take the hermitian conjugate of both sides.

$$
\begin{aligned}
\left(\mathrm{H}^{f}\right)^{\dagger} & =\left(\mathrm{SH}^{e} \mathrm{~S}^{-1}\right)^{\dagger} \\
& =\left[\mathrm{S}\left(\mathrm{H}^{e} \mathrm{~S}^{-1}\right)\right]^{\dagger} \\
& =\left(\mathrm{H}^{e} \mathrm{~S}^{-1}\right)^{\dagger} \mathrm{S}^{\dagger} \\
& =\left(\mathrm{S}^{-1}\right)^{\dagger}\left(\mathrm{H}^{e}\right)^{\dagger} \mathrm{S}^{\dagger} \\
& =\left(\mathrm{S}^{\dagger}\right)^{\dagger}\left(\mathrm{H}^{e}\right)^{\dagger} \mathrm{S}^{\dagger} \\
& =\mathrm{SH}^{e} \mathrm{~S}^{-1} \\
& =\mathrm{H}^{f}
\end{aligned}
$$

Therefore, H^{f} is hermitian.

With respect to an orthonormal basis, the inner product of two vectors is $\langle\alpha \mid \beta\rangle=\mathrm{a}^{\dagger} \mathrm{b}$. The inner product with respect to the new basis is

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle^{f} & =\left(a^{f}\right)^{\dagger} b^{f} \\
& =\left(\mathrm{Sa}^{e}\right)^{\dagger}\left(\mathrm{Sb}^{e}\right) \\
& =\left(\mathrm{a}^{e}\right)^{\dagger} \mathrm{S}^{\dagger}\left(\mathrm{Sb}^{e}\right) \\
& =\left(\mathrm{a}^{e}\right)^{\dagger}\left(\mathrm{S}^{\dagger} \mathrm{S}\right) \mathrm{b}^{e} \\
& \stackrel{?}{=}\left(\mathrm{a}^{e}\right)^{\dagger}\left(\mathrm{S}^{-1} \mathrm{~S}\right) \mathrm{b}^{e} \\
& =\left(\mathrm{a}^{e}\right)^{\dagger}(\mathrm{I}) \mathrm{b}^{e} \\
& =\left(\mathrm{a}^{e}\right)^{\dagger} \mathrm{b}^{e} \\
& =\langle\alpha \mid \beta\rangle^{e} .
\end{aligned}
$$

The inner products with respect to the new and old bases are equal if and only if $S^{-1}=S^{\dagger}$. Therefore, S carries an orthonormal basis into another orthonormal basis if and only if it is unitary.

